3.893 \(\int \frac{\sqrt{\cos (c+d x)} (B \cos (c+d x)+C \cos ^2(c+d x))}{(a+b \cos (c+d x))^3} \, dx\)

Optimal. Leaf size=344 \[ \frac{\left (-5 a^2 b^2 C+a^3 b B+3 a^4 C-7 a b^3 B+8 b^4 C\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{4 b^3 d \left (a^2-b^2\right )^2}-\frac{\left (a^2 b B+3 a^3 C-9 a b^2 C+5 b^3 B\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{4 b^2 d \left (a^2-b^2\right )^2}-\frac{\left (-10 a^2 b^3 B-6 a^3 b^2 C+a^4 b B+3 a^5 C+15 a b^4 C-3 b^5 B\right ) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{4 b^3 d (a-b)^2 (a+b)^3}+\frac{\left (a^2 b B+3 a^3 C-9 a b^2 C+5 b^3 B\right ) \sin (c+d x) \sqrt{\cos (c+d x)}}{4 b d \left (a^2-b^2\right )^2 (a+b \cos (c+d x))}+\frac{a (b B-a C) \sin (c+d x) \sqrt{\cos (c+d x)}}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2} \]

[Out]

-((a^2*b*B + 5*b^3*B + 3*a^3*C - 9*a*b^2*C)*EllipticE[(c + d*x)/2, 2])/(4*b^2*(a^2 - b^2)^2*d) + ((a^3*b*B - 7
*a*b^3*B + 3*a^4*C - 5*a^2*b^2*C + 8*b^4*C)*EllipticF[(c + d*x)/2, 2])/(4*b^3*(a^2 - b^2)^2*d) - ((a^4*b*B - 1
0*a^2*b^3*B - 3*b^5*B + 3*a^5*C - 6*a^3*b^2*C + 15*a*b^4*C)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(4*(a -
 b)^2*b^3*(a + b)^3*d) + (a*(b*B - a*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(2*b*(a^2 - b^2)*d*(a + b*Cos[c + d*x
])^2) + ((a^2*b*B + 5*b^3*B + 3*a^3*C - 9*a*b^2*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(4*b*(a^2 - b^2)^2*d*(a +
b*Cos[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 1.09723, antiderivative size = 344, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 42, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {3029, 2989, 3055, 3059, 2639, 3002, 2641, 2805} \[ \frac{\left (-5 a^2 b^2 C+a^3 b B+3 a^4 C-7 a b^3 B+8 b^4 C\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{4 b^3 d \left (a^2-b^2\right )^2}-\frac{\left (a^2 b B+3 a^3 C-9 a b^2 C+5 b^3 B\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{4 b^2 d \left (a^2-b^2\right )^2}-\frac{\left (-10 a^2 b^3 B-6 a^3 b^2 C+a^4 b B+3 a^5 C+15 a b^4 C-3 b^5 B\right ) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{4 b^3 d (a-b)^2 (a+b)^3}+\frac{\left (a^2 b B+3 a^3 C-9 a b^2 C+5 b^3 B\right ) \sin (c+d x) \sqrt{\cos (c+d x)}}{4 b d \left (a^2-b^2\right )^2 (a+b \cos (c+d x))}+\frac{a (b B-a C) \sin (c+d x) \sqrt{\cos (c+d x)}}{2 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^2} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[Cos[c + d*x]]*(B*Cos[c + d*x] + C*Cos[c + d*x]^2))/(a + b*Cos[c + d*x])^3,x]

[Out]

-((a^2*b*B + 5*b^3*B + 3*a^3*C - 9*a*b^2*C)*EllipticE[(c + d*x)/2, 2])/(4*b^2*(a^2 - b^2)^2*d) + ((a^3*b*B - 7
*a*b^3*B + 3*a^4*C - 5*a^2*b^2*C + 8*b^4*C)*EllipticF[(c + d*x)/2, 2])/(4*b^3*(a^2 - b^2)^2*d) - ((a^4*b*B - 1
0*a^2*b^3*B - 3*b^5*B + 3*a^5*C - 6*a^3*b^2*C + 15*a*b^4*C)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(4*(a -
 b)^2*b^3*(a + b)^3*d) + (a*(b*B - a*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(2*b*(a^2 - b^2)*d*(a + b*Cos[c + d*x
])^2) + ((a^2*b*B + 5*b^3*B + 3*a^3*C - 9*a*b^2*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(4*b*(a^2 - b^2)^2*d*(a +
b*Cos[c + d*x]))

Rule 3029

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[1/b^2, Int[(a + b*Sin[e + f*x])
^(m + 1)*(c + d*Sin[e + f*x])^n*(b*B - a*C + b*C*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 2989

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[((b*c - a*d)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)
*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[
e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1)*Simp[b*(b*c - a*d)*(B*c - A*d)*(m - 1) + a*d*(a*A*c + b*B*c - (
A*b + a*B)*d)*(n + 1) + (b*(b*d*(B*c - A*d) + a*(A*c*d + B*(c^2 - 2*d^2)))*(n + 1) - a*(b*c - a*d)*(B*c - A*d)
*(n + 2))*Sin[e + f*x] + b*(d*(A*b*c + a*B*c - a*A*d)*(m + n + 1) - b*B*(c^2*m + d^2*(n + 1)))*Sin[e + f*x]^2,
 x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2,
0] && GtQ[m, 1] && LtQ[n, -1]

Rule 3055

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dis
t[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b
*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(b*
c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Lt
Q[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&
  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{\cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^3} \, dx &=\int \frac{\cos ^{\frac{3}{2}}(c+d x) (B+C \cos (c+d x))}{(a+b \cos (c+d x))^3} \, dx\\ &=\frac{a (b B-a C) \sqrt{\cos (c+d x)} \sin (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}-\frac{\int \frac{-\frac{1}{2} a (b B-a C)+2 b (b B-a C) \cos (c+d x)-\frac{1}{2} \left (a b B+3 a^2 C-4 b^2 C\right ) \cos ^2(c+d x)}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))^2} \, dx}{2 b \left (a^2-b^2\right )}\\ &=\frac{a (b B-a C) \sqrt{\cos (c+d x)} \sin (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac{\left (a^2 b B+5 b^3 B+3 a^3 C-9 a b^2 C\right ) \sqrt{\cos (c+d x)} \sin (c+d x)}{4 b \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}-\frac{\int \frac{-\frac{1}{4} a \left (3 a^2 b B+3 b^3 B+a^3 C-7 a b^2 C\right )+a b \left (3 a b B-a^2 C-2 b^2 C\right ) \cos (c+d x)+\frac{1}{4} a \left (a^2 b B+5 b^3 B+3 a^3 C-9 a b^2 C\right ) \cos ^2(c+d x)}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{2 a b \left (a^2-b^2\right )^2}\\ &=\frac{a (b B-a C) \sqrt{\cos (c+d x)} \sin (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac{\left (a^2 b B+5 b^3 B+3 a^3 C-9 a b^2 C\right ) \sqrt{\cos (c+d x)} \sin (c+d x)}{4 b \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}+\frac{\int \frac{\frac{1}{4} a b \left (3 a^2 b B+3 b^3 B+a^3 C-7 a b^2 C\right )+\frac{1}{4} a \left (a^3 b B-7 a b^3 B+3 a^4 C-5 a^2 b^2 C+8 b^4 C\right ) \cos (c+d x)}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{2 a b^2 \left (a^2-b^2\right )^2}-\frac{\left (a^2 b B+5 b^3 B+3 a^3 C-9 a b^2 C\right ) \int \sqrt{\cos (c+d x)} \, dx}{8 b^2 \left (a^2-b^2\right )^2}\\ &=-\frac{\left (a^2 b B+5 b^3 B+3 a^3 C-9 a b^2 C\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{4 b^2 \left (a^2-b^2\right )^2 d}+\frac{a (b B-a C) \sqrt{\cos (c+d x)} \sin (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac{\left (a^2 b B+5 b^3 B+3 a^3 C-9 a b^2 C\right ) \sqrt{\cos (c+d x)} \sin (c+d x)}{4 b \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}+\frac{\left (a^3 b B-7 a b^3 B+3 a^4 C-5 a^2 b^2 C+8 b^4 C\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{8 b^3 \left (a^2-b^2\right )^2}-\frac{\left (a^4 b B-10 a^2 b^3 B-3 b^5 B+3 a^5 C-6 a^3 b^2 C+15 a b^4 C\right ) \int \frac{1}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{8 b^3 \left (a^2-b^2\right )^2}\\ &=-\frac{\left (a^2 b B+5 b^3 B+3 a^3 C-9 a b^2 C\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{4 b^2 \left (a^2-b^2\right )^2 d}+\frac{\left (a^3 b B-7 a b^3 B+3 a^4 C-5 a^2 b^2 C+8 b^4 C\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{4 b^3 \left (a^2-b^2\right )^2 d}-\frac{\left (a^4 b B-10 a^2 b^3 B-3 b^5 B+3 a^5 C-6 a^3 b^2 C+15 a b^4 C\right ) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{4 (a-b)^2 b^3 (a+b)^3 d}+\frac{a (b B-a C) \sqrt{\cos (c+d x)} \sin (c+d x)}{2 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^2}+\frac{\left (a^2 b B+5 b^3 B+3 a^3 C-9 a b^2 C\right ) \sqrt{\cos (c+d x)} \sin (c+d x)}{4 b \left (a^2-b^2\right )^2 d (a+b \cos (c+d x))}\\ \end{align*}

Mathematica [A]  time = 3.35566, size = 364, normalized size = 1.06 \[ \frac{\frac{2 \sin (c+d x) \sqrt{\cos (c+d x)} \left (b \left (a^2 b B+3 a^3 C-9 a b^2 C+5 b^3 B\right ) \cos (c+d x)+a \left (3 a^2 b B+a^3 C-7 a b^2 C+3 b^3 B\right )\right )}{\left (a^2-b^2\right )^2 (a+b \cos (c+d x))^2}-\frac{\frac{\left (-5 a^2 b B+a^3 C+5 a b^2 C-b^3 B\right ) \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a+b}-\frac{8 \left (a^2 C-3 a b B+2 b^2 C\right ) \left ((a+b) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )-a \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )\right )}{a+b}+\frac{\left (a^2 b B+3 a^3 C-9 a b^2 C+5 b^3 B\right ) \sin (c+d x) \left (\left (2 a^2-b^2\right ) \Pi \left (-\frac{b}{a};\left .-\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) F\left (\left .\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )-2 a b E\left (\left .\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )\right )}{a b^2 \sqrt{\sin ^2(c+d x)}}}{(a-b)^2 (a+b)^2}}{8 b d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[Cos[c + d*x]]*(B*Cos[c + d*x] + C*Cos[c + d*x]^2))/(a + b*Cos[c + d*x])^3,x]

[Out]

((2*Sqrt[Cos[c + d*x]]*(a*(3*a^2*b*B + 3*b^3*B + a^3*C - 7*a*b^2*C) + b*(a^2*b*B + 5*b^3*B + 3*a^3*C - 9*a*b^2
*C)*Cos[c + d*x])*Sin[c + d*x])/((a^2 - b^2)^2*(a + b*Cos[c + d*x])^2) - (((-5*a^2*b*B - b^3*B + a^3*C + 5*a*b
^2*C)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b) - (8*(-3*a*b*B + a^2*C + 2*b^2*C)*((a + b)*EllipticF[
(c + d*x)/2, 2] - a*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2]))/(a + b) + ((a^2*b*B + 5*b^3*B + 3*a^3*C - 9*a*
b^2*C)*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*a*(a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -
1] + (2*a^2 - b^2)*EllipticPi[-(b/a), -ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a*b^2*Sqrt[Sin[c + d*x]
^2]))/((a - b)^2*(a + b)^2))/(8*b*d)

________________________________________________________________________________________

Maple [B]  time = 3.077, size = 1937, normalized size = 5.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*cos(d*x+c)+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^3,x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*C/b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d
*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)
)-4/b^2*(B*b-3*C*a)/(-2*a*b+2*b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*
d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))+2*a^2*(B*b-C*a)/b^3
*(-1/2/a*b^2/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+
1/2*c)^2*b+a-b)^2-3/4*b^2*(3*a^2-b^2)/a^2/(a^2-b^2)^2*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+
1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2*b+a-b)-7/8/(a+b)/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*
x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))
+1/4/(a+b)/(a^2-b^2)/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4
+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b+3/8/(a+b)/(a^2-b^2)/a^2*(sin(1/2*d*x+1/2*
c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(c
os(1/2*d*x+1/2*c),2^(1/2))*b^2-9/8*b/(a^2-b^2)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2
)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3/8*b^3/a^2/(a^2-
b^2)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2
*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+9/8*b/(a^2-b^2)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*
d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2
))-3/8*b^3/a^2/(a^2-b^2)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*
c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-15/4*a^2/(a^2-b^2)^2/(-2*a*b+2*b^2)*b*(
sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(
1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))+3/2/(a^2-b^2)^2/(-2*a*b+2*b^2)*b^3*(sin(1/2*d*x+1/2*c)^
2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos
(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))-3/4/a^2/(a^2-b^2)^2/(-2*a*b+2*b^2)*b^5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*co
s(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c)
,-2*b/(a-b),2^(1/2)))-2*a/b^3*(2*B*b-3*C*a)*(-1/a*b^2/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+si
n(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2*b+a-b)-1/2/(a+b)/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*
d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2
))-1/2/a*b/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+s
in(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/2/a*b/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2
)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x
+1/2*c),2^(1/2))-3*a/(a^2-b^2)/(-2*a*b+2*b^2)*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)
/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))+1/a/(a
^2-b^2)/(-2*a*b+2*b^2)*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*
c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos
(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^3,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^3,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)**2)*cos(d*x+c)**(1/2)/(a+b*cos(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} \sqrt{\cos \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^3,x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))*sqrt(cos(d*x + c))/(b*cos(d*x + c) + a)^3, x)